Restarted GMRES method Augmented with the Combination of Harmonic Ritz Vectors and Error Approximations

نویسندگان

  • Qiang Niu
  • Linzhang Lu
چکیده

Restarted GMRES methods augmented with approximate eigenvectors are widely used for solving large sparse linear systems. Recently a new scheme of augmenting with error approximations is proposed. The main aim of this paper is to develop a restarted GMRES method augmented with the combination of harmonic Ritz vectors and error approximations. We demonstrate that the resulted combination method can gain the advantages of two approaches: (i) effectively deflate the small eigenvalues in magnitude that may hamper the convergence of the method and (ii) partially recover the global optimality lost due to restarting. The effectiveness and efficiency of the new method are demonstrated through various numerical examples. Keywords—Arnoldi process, GMRES, Krylov subspace, Systems of Linear equations

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Refined Harmonic Lanczos Bidiagonalization Method and an Implicitly Restarted Algorithm for Computing the Smallest Singular Triplets of Large Matrices

The harmonic Lanczos bidiagonalization method can be used to compute the smallest singular triplets of a large matrix A. We prove that for good enough projection subspaces harmonic Ritz values converge if the columns of A are strongly linearly independent. On the other hand, harmonic Ritz values may miss some desired singular values when the columns of A are almost linearly dependent. Furthermo...

متن کامل

Global GMRES with Deflated Restarting for Families of Shifted Linear Systems

Many problems in science and engineering field require the solution of shifted linear systems with multiple right hand sides and multiple shifts. To solve such systems efficiently, the implicitly restarted global GMRES algorithm is extended in this paper. However, the shift invariant property could no longer hold over the augmented global Krylov subspace due to adding the harmonic Ritz matrices...

متن کامل

Implicitly Restarted GMRES and Arnoldi Methods for Nonsymmetric Systems of Equations

The generalized minimum residual method (GMRES) is well known for solving large nonsymmetric systems of linear equations. It generally uses restarting, which slows the convergence. However, some information can be retained at the time of the restart and used in the next cycle. We present algorithms that use implicit restarting in order to retain this information. Approximate eigenvectors determ...

متن کامل

Augmented Implicitly Restarted Lanczos Bidiagonalization Methods

New restarted Lanczos bidiagonalization methods for the computation of a few of the largest or smallest singular values of a large matrix are presented. Restarting is carried out by augmentation of Krylov subspaces that arise naturally in the standard Lanczos bidiagonalization method. The augmenting vectors are associated with certain Ritz or harmonic Ritz vectors. Computed examples show the ne...

متن کامل

GMRES with Deflated Restarting

A modification is given of the GMRES iterative method for nonsymmetric systems of linear equations. The new method deflates eigenvalues using Wu and Simon’s thick restarting approach. It has the efficiency of implicit restarting, but is simpler and does not have the same numerical concerns. The deflation of small eigenvalues can greatly improve the convergence of restarted GMRES. Also, it is de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012